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ABSTRACT

herative error correction of asymptotically large associative memories is equivalent to a

one-step learning rule. This rule is the inverse of the activation function of the memory.

Spectral representations of nonlinear activation functions axe used to obtain the inverse in

closed form for Sparse Distributed Memory (Kanverva, 1988), Selected-Coordinate De-

sign (Jaeckel, 1989), and Radial Basis Functions (Poggio, 1989).
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Total Recall in Distributive Asm_iative Memories

1.0 Introduction

In this report, I study issues governing learning in associative memories which use pat-

terns to recall other patterns. The patterns can be simple or complex, composed of one or

many features. The features can refer to sensory input or high-level mental constructs. The

paper is theoretical and treats these patterns as abstract vectors in n-dimensional spaces.

There are many questions that can be asked about such systems, however, I focus on the

following.

How can precise patterns be recalled when information is distributed throughout an asso-

ciative memory? In what way can the effects of interference between patterns in the mem-

ory be undone? When an associative memory is implemented as an artificial neural

network what learning rule will produce high capacity and precise recall? How does the

issue of generalization relate to the issue of storage capacity?

These questions are examined for associative memories which have an unlimited number

of memory locations. This extreme case reveals there exist very efficient single-step learn-

ing rules for high quality recall. The extreme-case rules are precisely determined yet are

not simple nor intuitively obvious. I examine these rules in an effort to understand of the

basic processes governing the behavior of distributive systems.

I have found this investigation to be insightful for k indicates the interplay between stor-

age I and recall necessary to realize high quality memories. The picture that emerges is an

onion of alternating layers of excitation and inhibition about each neuron of the memory

(hence the logo on the title page). This picture is reminiscent of the on-center off-surround

network found in the visual cortex of higher vertebrates (Malsburg, 1973). Such structures

are necessary for producing sharp edges in distributive systems. Sharp edges are necessary

for precise discrimination in small regions when there are high correlations between dis-

parate input patterns.

The asymptotic results derived raise the question of whether there exist analogous rules

for nonasymptotic memories. This question is left to a later publication (Darfforth, 1991).

1.1 An example of total recall

One might well ask whether it is even possible to realize high quality recall in a distribu-

tive system. To illustrate that it is possible to realize perfect recall consider the following

simple example.

Assume an associative memory has input x where x is a pattern. For this example assume

the pattern is binary valued. Also assume there are but two bits inx (x 1 andx2). Assume
for each of the four possible inputs the output patterns y = A, B, C, and D are associated. It

is not necessary to specify what these patterns are or what their dimensionality is, only that

1. The inverse rules derived here can equally well be applied to the recall process. If recall uses the inverse
then learning uses the nile and visa versa.
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ity is, only that they are numeric. They do not have to be distinct. Assume there is a mem-

ory location for every possible input pattern (the asymptotic case). The specified

associations are depicted below.

In a distributive memory, when the pattern y = A is associated with the pattem x = (0, 0), it

is not placed just at (0, 0) but is written at several locations. This is partly motivated by the

desire for fault tolerance under hardware failure. See Figure 2.

The rule used for the distribution of pattern A in Figure 2 writes it in all locations within a

Hamming distance of one of(0, 0). If this rule is applied to each of the patterns A,B,C, and

D to be written into memory, the following configuration resuhs (Figure 3).

X 2

0

C D

A B

0 1

•--- X I

Figure I Desired assodattom.

X 2

0

A 0

A A

0 1

---- X 1v

Figure 2 DisWibuted storage.
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X 2

0

A+C+D B+C+D

A+B+C A+B+D

X 1

0 1

Figure 3 Multiple writes.

The contents of a memory location are taken to be the sum, e.g. A + B + C, of the patterns

written into it. Memory locations accumulate information by adding to their present store.

How can the desired pattern be untangled when this memory is read? If the same rule is

used for writing and reading, one would expect to read from all locations within one bit of,

say, (0, 0). How is this done? The contents can be pooled (summed) to produce

y = M(O,O)

=(A + C + D) + (A + B + C) + (A + B + D)

=3A + 2B + 2C + 2D.

It is not at all obvious that the pattern A which we wish to recover from location x = (0, 0)

will predominate in this sum. In fact, if all of the other patterns in memory are actually

equal to Q (B = C = D = Q), for some Q, then y = 6Q + 3A and the pattern Q predomi-

nates over the pattem A (six versus three).

So it appears that distribution followed by pooling is not a good way to store and recover

patterns precisely. However, one might think the pattern Q should be what is read from lo-

cation (0,0). The predominance of Q over A indicates A may be in "error". To accept Q is

to allow the memory to correct errors by smoothing local irregularities. But what if the da-

turn A is not error but signal? Then the signal has been lost in the noise of Q.

I will examine the case where all data are considered signal to be retained. For well-sepa-

rated data the distribute-and-pool process meets the needs of robustness and generaliza-

tion. If the data are not well separated then noise can swell to overcome the signal.

Is there an altemative way to distribute information such that, on recall, the signal pre-

dominates? The answer to this question is yes, and the way this distribution and recall pro-

cess interact is illuminating.

Jtnutry 23, 1991 3
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Consider Figure 4 where the write rule has been changed. Locations within one bit of(0,

0) now receive the pattern A/3 whereas the location two bits away in Hamming distance

receives twice the negative of this value. Applying this new role to each of the remaining

patterns produces Figure 5.

0

X 2

1 2

1 1

0 1

X!r

Figure 4 A new write rule.

0

X 2

1
-_(A+C+D-2B)

I

-_ (B+C+D-2A)

1

(A+B+C-2D)

l

-_ (A + B + D - 2C)

0 1
X 1

Figure $ Multiple writes using new rule.
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If the memory is now read at (0, O) with the original pooling rule (the contents of all loca-

tiom within a Hamming distance of one are added), then

y = M(O,O)

= ((A + C +D-2B) + (A+ B + C-2D) + (A +B + D-2C))/3

= (A +A +A +B +B-2B + C+ C-2C +D +D-2D)/3

= (3A +0 +0 +0)/3

=A

and the desired signal is recovered without error. The patterns B, C, and D at (0, 1), (1, 0),

and (1, 1) are likewise recovered exactly. So by changing the write rule but retaining the

read rule it is possible to compensate for the process of distributing information within the

memory. How was the write rule determined? The answer to this question is the main top-
ic of thisreport.

It can be argued that shuffling information around in a memory which spans all possible

input patterns is not very enlightening since it is precisely the vasmess of the number of

these patterns (21000, say) that makes it impossible to construct such a memory. Having

said this, it is still beneficial to understand what form the shuffling and encoding must take

in order to retrieve patterns from a dense memory (one with all possible locations present).

It will be shown that knowledge of this dense case provides information about the ensem-

ble average of sparse memories. It will also be shown that error correction in artificial

neural nets is related to this process of weighting and shuffling of information. In addition,

the analysis of the asymptotic case provides a concrete place to stand for further analysis

of smaller implementable memories.

January 23, 1991 $
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2.0 Overview

This report develops a methodology for constructing sin#e-step write-rtdes for asymptot-

ically large single-hidden-layer artificial neural systems based on a spectral representation
of their nordinear activation functions.

In section 3.0 notation is developed for reading and writing using nonlinear operators.

In section 4.0 it is shown that repeated writing of errors into a memory implements a series

expansion of the inverse of its activation function.

In section 5.0 the general notation of the spectral representation for activation rules is in-

troduced and the general form of the inverse derived from it.

In section 6.0 the inverse is determined for Sparse Distributed Memory (Kanerva, 1988).

In section 7.0 the Selected-Coordinate Design (laeckel, 1989) is discussed and its inverse
derived.

In section 8.0 Radial Basis Functions (Poggio, 1989) are introduced and an expression for

their inverse is presented.

The report ends with section 9.0 giving a summary and conclusions of this research.

J'anu_y 23, 1991 7
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3.0 Notation

An associative memory is a system for constructing input-output mappings from examples

of input-output pairs. The memory has a construct called a location with a set of input

weights, .¢, and a set of output weights, _. The vector k corresponds to the address of the

location in a Random Access Memory (RAM) and the vector _9corresponds to the data

stored at the location. A location is activated by an input pattern x ff the address decoder or

activation function, A, deems that the pattern is sufficiently similar to the address _ of the

location. If the location is activated, information y either can be stored at the location

(weights 3_modified) or retrieved from the location (weights)_ contribute to the output

from memory). The activation rule, A, is the kernel or fundamental aspect that characteriz-

es an associative memory. This activation rule will be written symbolically to bring forth

its functional dependence on input, x, address, ,t, and dimensionality of the input space, n.

When specializing to specific forms for Sparse Distributed Memory and Selected-Coordi-

nate Design, other parameters will be introduced. The activation rule is written as

a = ax, 1)

By writing the activation rule as a function of two arguments (the input vector and the in-

put weights), a very broad class of functions can be represented. It includes the standard

linear threshold unit where the inner product ofx and _ is compared to a threshold. It also

includes functions that may depend in a complex manner upon the interplay between input

and weights. The result of activation, the quantity a, can be binary valued or real valued

(e.g., sigmoid functions). The tmspeeified complexity of A has the potential of modeling

not just a node in a single hidden layer but also a node deep within a multilayer system

when the dimensionality of .¢ is allowed to be far larger than that ofx. In this paper it is as-

sumed A is the activation rule for a memory with a single hidden layer.

Although the results of activation are treated linearly, it needs to be stressed that the acti-

vation rule A can be a highly nonlinear function of its arguments. Many of the results de-

rived in this paper are independent of the exact form of this nonlinearity.

3.1 Sparse sampling

The pairing of input pattern, x, with output pattern, y, leaves unspecified whether the pair

is actually observed in any finite sample. A notation is adopted here that depicts y as a di-

rect function of x, namely, Yx (for discrete input spaces) or y(x) (for continuous input spac-

es). This notation is taken to mean that at any input point x, Yx is the observed output at

that point. If x does not occur in the sample, Yx is zero. If x occurs multiple times in the

sample, Yx is the sum of the y's at that point. In like manner Yl is the sum of the data

stored at address ,t. If there is no location in memory with address _, pi is the zero pattern.

With this understanding, the patterns x and :t are allowed to range over all their possible

values with Yx and )_i constraining the associated values to those observed.

Iamuary 23, 199 i 9
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3.2 Projections

The issue of sparse data sampling can be specified cleanly in terms of projection opera-

tors. I define the operator H to be the projection of the space onto the subspace spanned

by sample data y. The action of H on y leaves y unchanged. Since the operator is a projec-

tion it is idempotent (repeated application of a projection is the same as a single applica-
tion). So

Fly = y,

HH=H.

(EQ 2)

For discrete spaces, one can think of the operator H as the identity matrix with holes along

the diagonal. The nonzero diagonal elements specify the input patterns that occur in the
data.

In like manner, sparse memory locations can be represented as a projection, H, of the full

space of all possible memory locations onto those actually occurring in the memory, 5_. We
then have

(EQ 3)

These projection operators are mentioned here for completeness of exposition. They will

be sparingly used in the body of this report but will play a stronger role in future research

dixected at the issue of generalization in sparse memory systems.

3.3 Recall

The process of recall from a distributive memory is taken to be a weighted summing of in-

formation from the locations of the memory conditionalized on the input pattern x. The

weighting is determAned by the activation rule A where

sx = _A ,/yi. (EQ4)

The result of this weighted pooling is a pattern, s_, called the sums. The sums may be fur-

ther processed for other stages of analysis or for cascading memories. In this work, the

sums are considered the output from the memory.

Ifx is an observation point with Yx then for perfect recall it is desired to have s x = Yx.

3.4 Storage

The process of storage in a distributive memory is taken to be a weighted summing of in-

formation from observations conditionalized on the input pattern x'. The weighting is de-

termined by an activation rule B (to be determined in terms of A) where

10 Ianaary 23, 1991
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and

X I

OEQ 5)

{_ g present,I_I_,_ = otherwise.

(EQ 6)

Each observation, Yx', is weighted by the B activation rule and written into location k if it

is present. The quantity Yi accumulates these values.

3.5 Operators

The previous equations can be encapsulated concisely by using operator notation. By this

I mean that for discrete spaces the quantkies are considered vectors and matrices and for

continuous spaces the quantities axe functions with one or two arguments. Products are

taken to be inner products (summed or integrated) over their appropriate spaces.

The values stored in memory are written as

= l'_y (writing to memory) (EQ 7)

and the values recalled from memory are written as

s = A._ (reading from memory) (EQ 8)

The sums, s, can now be expressed directly in terms of the observations, y, as

s = AHBy. (EQ9)

3.6 Ensemble averages

The operator I:I plays a fundamental role in actual implementation of associative memo-

des for it specifies in address space (weight space) where hidden nodes axe placed. If these

locations are randomly chosen subject only to the constraint the expected number of them

is fixed, then the expected behavior of the associative memory can be derived. Let p be the

probability a specific address will exist in a uniformly randomly chosen memory. The ex-

pected value of fI is then just a multiple of the identity matrix

E(I"]) - p[ (EQ I0)

for fixed positive scalar constant p. This means, over atl models with randomly chosen

hidden nodes, the expected sums for a fixed training set can be derived from the product of

the activation rule and a memory with all possible locations present. Hence, the operator
fI will not be considered in the remainder of this paper and the sums will be written as

January 23, 1991 11
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s = ABy. [ (EQ 11)

The results that follow therefore hold for uniformly randomly_ chosen hidden nodes or

dense memories where all possible hidden nodes are present. 2

3.7 Identity transformations

If one could fund a B such that AB were the identity u:ansformation, then the sums, s,

would be exactly the data, y, and recovery of data would occur without error. Note that

reading at points x which were not sampled would yield the zero pattern. For systems that

generalize this is not desirable, whereas for systems with perfect recall, it is.

I now tam to the motivation for considering inverses arising from the practice of using er-
ror correction in artificial neural networks.

2. Random placement of locations for the Selected-Coordinate Design has been shown (Danfort_ 1990) to
give good results for single-talker discrete-speech digit recognition.

12 January 23, 1991
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4.0 Series expansion of inverse operators

A frequently used learning rule in artificial neural network research is back-propagation

(Rumelhart, 1986). It repeatedly cycles the differences (errors) between desired output and

actual output back into the network to adjust internal weights between layers of the net-
work. 3 The form of associative memories considered in this paper have a single hidden

layer where the weights between the input and hidden layer axe fixed. Only the weights be-

tween hidden and output layer axe adjustable. Therefore, knowledge of the derivative of

the activation rule is not needed since propagation of errors through more than one layer is
not used.

What I now show is when errors axe used to cyclically adjust the weights in a system with

one hidden layer where all possible hidden nodes axe present, the resultant state of the

memory is identical to that produced by a single-step inverse operator.

The following derivation assumes (in accord with current neural net literature) the activa-

tion rule used for recall from memory is the same one used for storage in memory.

Let 5;(t - 1) be the data stored at location ;_ (with _ unrestricted) at time t-l. If one writes

into this location the difference between the desired signal y and the sums generated by a

read operation with activation rule A, the value of the data at time t will be given by

_(t) = _(t- 1) + Are(t- I) (EQ t2)

where

e(t- 1) = y -A_(t- 1). (EQ 13)

The operator A T is the write operator and is the transpose of the read operator A (the trans-

pose distinction is made here for purity and is usually not stipulated since most activation

rules are symmetric). The write operator weights and pools the errors from distant patterns

to a specific hidden location for modification. The read operator weights and pools all hid-

den locations to produce the output sums for comparison with the desired signal, y. Recall

y is the whole data set. That is, Yx is the output pattern associated with input pattern x. Ifx

does not occur in the data set then Yx is the zero pattern. Now (EQ 12) represents one ep-

och of training (note the error signal is buffered until all values are calculated; then every

location is updated at once). Regrouping of terms gives

y(t) = ATy + (1 - ATA) y(t - 1). (EQ 14)

When carried to time t=O, this recursion yields the sum

t-1

y(t) = _, (I-ATA)_ATy (EQ 15)

_=0

3. A similar technique is used by Prager (1989) to adjust the weights of an associative memory.

lan_ar_ 23, 1991 13



Douglas O. Danforth

where it has been assumed the memory is filled with the zero pattern at time zero. In the

limit of an infirdte number of epochs the above series expansion is formally equivalent to

t---)_

0_Q 16)

T
= _ ([-ATA) A y,

_=0

-I T
= [[-(I-ArA)] A y,

= [ATA]-IATy,

That is, if the series converges then k converges to the inverse of the operator. This formal

argument reveals the relationship between writing errors into an associative memory and

the use of an inverse operator for the learning rule. They axe equivalent. This equivalence

holds only when all possible hidden locations axe present (no restriction on domain of ._)4

and an infinite number of error-correction cycles is used. It indicates there exist strategies

(inverse rules) that lead to very rapid (a single epoch) learning of specific patterns.

4. For sparse sampling and sparse memory there is an equivalent statement concerning the matrix derived
farm the activation ride evaluated on the lattice of observation points.

14 Iu_mry 23, 1991
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5.0 Spectral representation of nonlinear operators

Given an activation rule, A, for an associative memory, one wishes to find a second rule,

B, which will act as the inverse of A. This is expressed as

_Ax, iB :i,x, = 8x, x,
(discrete spaces) (EQ 17)

or

f A(x, x')d.i = 5(x- x') (continuousspaces). (EQ 18)

The quantity 5 is the Kronecker delta function for discrete spaces and is the Dirac delta

function for continuous spaces. The operator, B, acts as the write-rule into memory and

the operator A acts as the read-role from memory. The intermediate states, :_, absorb infor-
marion written to them in a distributed fashion and then, during reading, recombine that

information.

The determination of the operator which cancels the effects of pooling can be determined

for both discrete and continuous spaces in terms of the associated eigenvalue problem for

the operator A. The problem is written

A_p = A_F (eigenvalue problem) (EQ 19)

where _P is the eigenvector associated with A and A is its eigenvalue 5. For binary input

spaces of dimension n, the number of components of • is equal to 2n. For continuous in-

put spaces of dimension n, the eigenvalue problem is a homogeneous integral equation of
the second kind (Smithies, 1962) and the eigenvectors axe eigenfunctions of n parameters.

I use eigenvector notation here with the understanding inner products can readily be inter-

preted as integrals for continuous spaces. Orthogonality is easily shown to hold for real

symmetric operators A, (interchange of input pattern and address pattem leaves the value

of activation unchanged).

_pa_ bT-- 8 a, b (orthonormal eigenvectors). (EQ 20)

The superscript T stands for the transpose of the vector, and the quantities a,b specifies

which member in the set of eigenvectors is under consideration.

If the eigenvectors form a complete set (basis), then an arbitrary vector (function) in the

space can be written as a linear combination of them as

y = _co_F a (eigenvector expansion). (EQ 21)

5. Uppercase lambdas are written for the full eigenvalues since they are usually the weighted cumulation of
shell eigenvalues. Shell eigenvalues are written as lowercase lambdas (see section 5.2).

lanuary 23, 1991 15
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The identity operator is written as the sum over aLl outer products of the eigenvectors as

i= '_.,,.++". _Q2:>
4

That this is true can be proved using the orthonormality of the eigenvectors, where

+:C++,,+:)I+++,++,I=.+x,+,
a, b a

It also can be shown the operator A is expressible in terms of _Ij and A as

A= ZA,,*+*."

A,++,_i++,+,+:),+,:++,+++:
since

The inverse of A (when it exists) is now written as

A-t= ZAat.a_a r'

= ZAaA-aI_Pa_Fra = Z_Pa_PTa = I.

since

a a

5.1 Eigenvector interpretation

CEQ23)

(EQ 24)

(F.Q25)

(EQ 26)

CEQ27)

The eigenvalue problem is interesting unto itself for it specifies the set of patterns recalled

without change by read operations (except for a constant multipLier A). It is the collective

set of patterns that has this property and not just a single pattern _Pa, x at x. If one were to

write into memory a collection of patterns specified by the eigenvector _Fa then the dis-

tributed internal representation would simply be AaW/a. Reading from memory would re-
trieve the data multiplied by the eigenvalue squared. Therefore, there exist data sets that

are natural to an associative memory. The sets, however, are highly specific and ate un-

likely to occur in any actual experimental environment. They do, however, form a basis

for arbitrarydam setsand itisthispropertythatisexploitedindeterminingthe write-rule

thatisthe inverseof theread-ruleof thememory.

16 Jmuary _, 1991
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5.2 Radial kernels and shell operators

An activation rule dependent only on the distance between its arguments will be called a
radial kernel. Radial kernels can be written as

Ax, x.(n) = f(dn(x, 5c)) (radial kernel). (EQ 28)

The functionfis a scalar of one argument and d n is a distance metric for vector arguments
of n dimensions.

A radialkernelcan be decomposed intoa linearcombination of more primitive shelloper-

atorS(n,p).A shelloperatorisactivatedwith unitvalue when itscomponents areseparat-

ed by adistanceexactlyequalto p. The shelloperatoriswrittenas

d,(x,._) = p,

otherwise.
(EQ 29)

A radialkernelisthensimply a weighted sum of theseshelloperatorswith p ranging

over its permissible values as

A(n) = _S(n, p)/(p). (EQ 30)

If one can solve the eigenvalue problem for S and the eigenvectors are not a function of p

(as will be shown to be the case) then the eigenvalues for a general radial activation rule

will simply be a linear combination of the eigenvalues of the S operator weighted by the

radial dependence functionf

A(n) = _"_.(n,p).Kp). (EQ 31)

Since the eigenvectors of S are not a function of p (to be shown) it follows that the eigen-

vectors of S axe also the eigenvectors of A and the task thereby reduces to solving the ei-

genvalue problem for S. The eigenvectors of S become the fundamental basis set for

representing arbitrary memory configurations in all memories with radial activation rules.

5.3 Eigenvalue problem for shell operators

The task now at hand is to solve the following eigenvalue problem

S(n, p)W (n, p) = _(n, p)_F(n, p) (EQ 32)

with S a shell operator defined by (EQ 29). The eigenvector_ has been explicitly tagged

with n and p dependence. Now if S(n, p) commutes with S(n, p') for some other p' then
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k is possible to find a common set of eigenvectors for both operators (Merzbacher, 196 l).

If this is true for any two values of p it is true for all values of p and there is a single com-

mon set of eigenvectors independent of p.

5.4 Proof shell operators commute

or

Let S' be a shell operator with activation radius p'. Then S and S' axe said to commute ff

SS' - S'S (EQ33)

_.,Sx, u(n, P)S.,x,(n, p') = _' Sx, v(n, p')Sv, x,(n, p).
U V

From the definition of S this is equivalent to requiring

(EQ 34)

_l[dn(x,u)= p & d.(u,x')=p'] = _l[dn(x,v)= p' & dn(v,x')= p] (EQ35)
M V

where I is the indicator function which equals one ff its argument is true and is zero other-

wise. The indicator function on the left-hand-side will be one for those points u which are

p distant from x and p' distant from x'. Does there always exist a v (for every u) that is p'

distant from x and p distant from x' ? If so then the above equation will be true. The one-
to-one transformation 6

satisfies this requirement since

dn(x, v) = [Ix - vii

u+v = x+x' _Q36)

= fix- (x+x'-u)[I - llu-x'll = d_(u,x') CEQ37)

and

dn(v,x') = llv-x'll = [1(x+x'-u) -x'tl - IIx-ull = dn(x,u). (EQ38)

Therefore, it has been shown the S operators commute and the eigenvalue problem can be
written as

S(n, p)_F (n) = _n, p)W(n) (EQ 39)

with a common set of eigenvectors _F(n) independent of p.

6. It should be noted boundary conditions on the space can make it impossible to satisfy this symmetry con-
straint. Itis assumed bere this is not the case.
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6.0 The Kanerva model

Pentti Kanerva (1988) has presented a sparse distributed memory model of associative

memories that uses patterns composed of long bk strings. He derives many interesting re-

sults from this abstract model which is based on the standard random access memory of

present day computers. The Kanerva model is specified by an activation rule (kernel) of
the form

Ax'x_n' r) = { _ dn(x' x) < r'otherwise,

for x,:_ {0,1}".

_Q 4O)

The quantity r is a free parameter of the model and is called the activation radius. The met-

ric, d n, is the Hamming distance between patterns x and .f where both are binary valued

vectors. The weights, :_, are fixed and are called the address of a location (hidden node).

This activation rule is a radial kernel where the radial dependence functionfis a step func-
tion. It is written

f(p,r)= {_ p<r,otherwise.
(EQ 41)

This rule has a sharp discontinuity at distance r between x and :?. The rule is not differen-

tiable and so gradient descent methods which rely on fu'st derivatives of the activation rule

for error minimization can not be applied. This does not mean error signals can not be

used to modify the contents of memory (see for example Prager, 1989) only that gradient

techniques can not be used. One might be lead to believe this "hard thresholding" activa-

tion rule would make it impossible to find an inverse write rule, however, this is not the

case as I now show. The decomposition of radial kernels into sums of shell operators can

now be specialized to the Kanerva model as

n

A(n, r) = Z J_p, r)S(n, p). (EQ 42)

p=O

6.1 Eigenvalue problem for the Kanerva model

The task reduces to solving the eigenvalue problem for a shell that uses Hamming distance

between binary vectors.

In 1
Li=I

_Q 43)
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where x i, "¢i are bits and d is one if they differ and is zero if they are the same. A recursive

decomposition can now be applied to S(n, p) in order to represent it in terms of

S(n - 1, p). With this decomposition it is possible derive a set of recurrence relations for

the eigenvalues and eigenvectors for S. Now

Sx, x.(n, p) = ltd(xn, Rn) + _ld(xi,._i)=p.
i---I

(EQ 44)

If the n th components x,,, ._, are equal then evaluation of the indicator function falls upon

the evaluation of the second term which is identical to S(n - 1, p). If the ntla components

differ then evaluation of the indicator functions falls again on the second term but this time

with reduced activation radius equal to p - 1. These results can be summarized by parti-

tioning the shell operator for n dimensions into four parts, one for each of the possible

x,, _t,, combinations, namely

I S(n-1;P__.)I)S(n-I'p-ll 1S(n, p) = LS(n _ 1, S(n - 1, p) "
(EQ 45)

The dimensions of the operator S(n - 1, p) are 2n'l by 2 n'l and grow by a factor of two as

n increases by one. If one could establish the relationship between the solutions of the ei-

genvalue problem for S(n, p) in terms of those for S(n - 1, p) and knowing the solutions

for n=O, one would have the solutions for all n. This indeed is what will be done. I now

state that an eigenvector for n dimensions is built up from a partition of eigenvectors ofn-

1 dimensions as

,I,±(n)= _ _,+'e(n- 1))"
CEQ46)

Note normalization and orthogonality hold for n dimensions if they hold for n-1 dimen-

sions, since

_T (n)_±(n)= Wr(n- Z)_(n- I)= 1, (F..Q 47)

_I'r+ (n)W_: (n) = 0.

Completeness also follows if the set of eigenvectors for n-1 dimensions is complete. To

see this note there arc 2n'l orthonormal eigenvectors for a binary space of n-1 dimensions.

For each one of these, two are created for n dime_iomi one Which is cons_cted by the

concatenation of equal vectors with a plus sign (and weighted by the inverse of 4r2) and

another which is constructed by a concatenation with a minus sign. Each of these new 2n

vectors is orthonormal (see above) and so the set spans the space. It remains to show

_(n), as given by (EQ 46), is indeed an eigenvector of the shell operator S(n, p) as given

by (EQ 45). The eigenvalue problem may now be written as
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I S(n- I, S(n- I,p = )_±(n,p)
:(n- I,p- s(n- i,p) k+V(n- l)) k±v(n- I))

fEQ 48)

One can quickly see that the operator applied to the partitions yields a multiple of the full
vector since the vectors for n-1 dimensions are by definition eigenvectors of the operators
for n-1 dimensions. The upper and 10wer partition yield the same relationship between the

eigenvalue for n dimensions in terms of those for n-1 dimensions, namely

_.± (n, p) = g(n - l, p) + g(n - 1, p - I). (EQ49)

Now (EQ 46) and (EQ 49) are the desired recurrence relations for the eigenvectors and ei-

genvalues of the Kanerva model. To derive a closed form expression for them begin by de-
fining the eigenvector for n=O (no bits) as equal to one, hence

"P(O) - 1. O_Qso)

It then follows

v+(1)=
(EQ 5D

and

'_'.(i)= _ .
(EQ 52)

One can see as n increases, vectors will be composed of suings of alternating signed 1 's.

Let's continue this process for one more step to help reveal an analytic expression of a

vector's components:

Ill1 4-1
_++(2) = -_ +1 '

1

_Q 53)

f+:lI -

_F+-(2)= _L+l]'
-1

_Q 54)

I +

• .+(2) = _\_1 '

(EQ55)
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The analytic form that satisfies the vector expressions is

6£Q 56)

l O_7x

• ,_.,(.) = --:_ (- l)
42"

(Kanerva model eigenvectors). (EQ 57)

The label a distinquishes different eigenvectors. It is a bit string residingTin the same n-di-
mensional space as that ofx (the input bit pattern space). The quantity a x is the inner

product between the bit vectors a and x. It is the sum of the logical AND of the bits. The

(- 1) to this power retains only the information of whether this inner product has even or

odd parity.

To see (EQ 57) satisfies (EQ 46), let a,, and x, be single bits (the nth bit of a bit vector of
length n) and a', x' bit vectors of length n-1 then:

1 [(-1) (a' °+"'r_') 1

_°c'a"x/(")= _ [(-1)(a z+,,'r_') t ' (EQ 58)

[ _I__(_i, c_,_,_ l
I| J:-' ' [

: ]'

(EQ 59)

,I 1'Fa, a',_:'(n) = _| a - (EQ60)
L(-I) _cC,x,(n- 1

As a flips between zero and one the lower partition's sign changes between + I and -I

thereby showing (EQ 57) does indeed satisfy the recurrence relation for the shell eigen-
vectors.

The eigenvectors that have been found tO Satisfy the shell operator for binary spaces are

not new. In fact these functions were investigated by Hadamard and now bare his name

(Harwit, 1979). For each a there is a Hadamard function _F(_the coLlection of which form
a basis for the binary space. These functions axe the eigenvectors of all activation rules

that depend only radially on the binary weights (address) of a hidden node and the binary

input pattern. I now turn to the issue of an explicit form for the eigenvahes. Since each ei-
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genvector is labeled by a bk string a it is also necessary to do so for each eigenvalue.

Therefore,

O[ R

k,,(n, p) = 7_a,(n- t, p) + (-1) ka,(n- t, p - 1) (EQ 61)

for a,, a bit and a' a bit-string of length n-1. The boundary conditions for X are chosen to
be zero for p outside of the interval [0,n] of possible distance values. Hence

_,a(n, p) -- 0, p E [0, n]. (EQ 62)

To solve (EQ 61) it is expedient to transform it into a generating function by multiplying

by an arbitrary parameter, t, raised to the power of p and then summing over all p from

zero to n. Let ga(n, 0 be such a generating function expressed as

/l

ga(n, t) =-" _, ka(n, p)t p. (EQ 63)

p;O

It follows (using the above boundary conditions) that:

gaCn, t) = ga,(n - 1, t) + (-t)a'tga,(n - 1, t), (EQ 6o,)

ga(n,t) = [1 + (-l) a't]ga,(n - l,t), (EQ 65)

n

ga (n't) = H [1+ (-1)'_'t],
i--I

(EQ 66)

and so finally,

ga(n, t) = ( 1 - t) 1tall ( 1 + t)"-II all (EQ 67)

where [Ictll is the Hamming weight of ot (the number of bits equal to 1 in the bit-string).

The beauty of the generating function representation is that it reveals the order-indepen-

dence of the bits in the eigenvalue label oc. The generating function can be used to deter-

mine many interesting properties of the eigenvalues. An explicit expression for the

eigenvalues can now be obtained by expanding the factors (EQ 67) in powers of t, collect-

ing like powers, and equating the coefficients of these powers with the eigenvalues. A set

of expansion coefficients, C, are defined here which will be useful later in the expression

of the inverse Kanverva model. They are

Ca(a,b) = _ (-1) t a-k
k=0

(EQ 68)
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These coefficients have an alternating sign in from of the binomial coefficients and are

closely related to the hypergeometric distribution (Feller, 1968). The shell eigenvalues can
now be written as

p)= Cp(n-IIc ll,ilocll). O_Q 69)

So, the eigenvalueproblem for a shelloperatorwith binaryvalued arguments and Ham-

ruingdistanceactivationhas been solved.The eigenvectorsfortheKanerva model are the

same as theseeigenvectors.The eigenvaluesarethesum of theshelleigenvaluesup tothe
activationradius,r.

IAa(n, r) =

• P

Aa(n, r) = _ Xa(n, p),

p=O

ZZ
p=Ok=O

(Kanervamodeleigenvalues).

(EQ 70)

(EQ 71)

6.2 Inverse of the Kanerva model

Having solved the eigenvalue problem for the Kanerva model there still remains the issue

of whether it has an inverse. This is equivalent to asking whether any of the eigenvalues

are zero. Interestingly, the answer to this question is determined by whether the parity of a

binomial coefficient is even or odd. If it can be shown that the parity of an eigenvalue is

odd then that eigenvalue can not be the number zero. The recursion relation for the shell

operator can be used to show the parity of shell eigenvalues is not a function of the eigen-

value label oc. Let _ be a parity operator defined as

7t(a)=(+_ aeven,- a odd.
(EQ 72)

With this operator the parity of the sum of two numbers is the product of the parity of the

numbers and the parity of the negative of a number is just the parity of the number, so:

_(a + b) = _a)_(b), (EQ 73)

_(-a) = _a). (EQ 74)

The parity of the recurrence relation of the shell eigenvalues then becomes:
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_(_.a(n, p)) = _(_.¢x.(n- I, p) + (-I) a"_.a.(n- 1, p - 1)), (EQ75)

= _(_,,,.(n-I,p))r,,((-l)a'_._.(n-i,p - i)),

= x(_.=.(n- 1, p))x(_._.(n- 1,p - 1)).

It can be seen the parity for n dimensions is not a function of the nth bit of a Since this is

expressed recursively in terms of the parity for n-1 dimensions it follows that the parity is

not a function of any of the bits of a, As such, knowledge of the parity of _,_x(n, p) for one

value of a yields the parity for all values of a Choose a equal to the string of all O's with

Hamming weight zero, I[am[ = 0, then the eigenvalue for this oc reduces to a binomial co-

efficient expressed as

_,o(n,p)= (;). (EQ 76)

In summary, the parity of a shell eigenvalue with label ct is the same as the parity of the

eigenvalue with label 0 which is the same as the parity of a binomial coefficient, so

_(X.a(n,p))= _(_.o(n,p))= _((;))- CEQ 77)

The parity of the binomial coefficients for n up to 16 is presented in the following dia-

gram. It is noticed for n=2 k-I (e.g. 0,1,3,7,15, etc.) the parity is constant for all p and

equal to -1. It also appears that the diagram is self recursive; the top triangle down to 2 k-I

is copied below itself to the left and to the right with the intermediate spaces filled with
+'S.
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Figure 6 Parity table for binomial coefficients.

It is speculated the parity of a binomial coefficient is given by the nile

7t( ) = _ +1 otherwise
(EQ VS)

where PB is the base-2 bit-vector representation of p, fib is the bit compliment of the
base-2 representation of n, ^ is the logical AND of bits and 0 is a bit string of 0's (all

representations are considered padded with sufficient bits to represent the largest number).

For example, n=12, p--4 implies nB=ll00, _B--0011, pB---0100, and _B ^ PB=0000" So

the parity rule says 12 choose 4 should have odd parity. Looking back at the parity dia-

gram it can be seen this is true. If this rule is true then when n is one less than a power of
two the binary representation of n has all one-bits and since p is less than or equal to n the

sets riband PB are disjoint and their logical AND is zero for all bits. Now the Kanerva
model makes use of the sum of the first r shell eigenvalues. The parity of this sum is the

product of the parity of individual eigenvalues which is the product of the parity of the

corresponding binomial coefficients. The parity of the sum of the binomial coefficients is
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equal to this product and so can be used to evaluate the parity of the sum of the shell ei-

genvalues.

p=O

(EQ 79)

: 1-I x(_._(n,p)),
p=O

which is the parity of the cumulative binomial distribution. The parity table for the cumu-

lative binomial coefficients is given in the next diagram.
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Figure 7 Parity table for cumulative binomial codlkients.

It can be seen for n=2k (e.g., 1,2,4,8,16, etc.) the parity is odd for all coefficients accept for

the l_t entry where r=n. As such, no eigenvalue for the Kanerva model can be zero for

any activation radius less than n for n a power of two. It is now possible to state the fol-
lowing theorem for the Kanerva model:

If the dimensionality of the input space, n, is a power of two and
the activation radius, r, is less than n then the Kanerva model
has an inverse.

There are other combinations of n and r for which the Kanerva model has an inverse, how-

ever, they are not as easily specified.

Knowing the Kanerva model has an inverse we are in a position to derive an explicit ex-
pression for it. Recall that an arbitrary invertible operator can have its inverse expressed as
a linear combination of the outer products of its eigenvectors with the inverse of its eigen-
values. If A -1 is the inverse of the Kanerva model then
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(x

f_Q 8o)

That the Kanerva activation rule is only a function of the distance between its elements

would lead one to suppose its inverse would also have this property. This turns out to be

true and can be demonstrated by breaking the sum over ct into two sums, one over

w = IIall and the other over all labels with fixed Hamming weight [Icttl.

(-I) a_i (-1) aq
A_.,lx(n,r) = _ ,. I

2n,_ 2,¢2 '

Cp(n-Ilall, I1o 11)
p=O

(_l)ar(i+x)
=2-n_ r

0t

y_.Cp(n-IIctll,IIall)
p=O

n _ (--1) ar(i+x)

= 2-n _ _llaltr _w

.,=o cp(n-w, w)
p=O

The expression in the numerator of the last equation, interestingly, can be represented in

terms of the expansion coefficients, C, and the hamming distance, d, between the vectors ._
and x. Now

(EQ 81)

lq

(-1)c:(_÷x) = _ H (-1)a'(_'+x')' (EQ82)
al IIatl = ,,, aq II(xlt ffiwi ffi!

E
m

lq

H (-1) Qt,(i,_ x,).
IIall = wi = !

If a component of _ and x are equal then their sum is either zero or two. In either case this

sum times the component of ct is even. The quantity (-1) to an even power is 1 therefore

components of ,¢ and x which are equal do not affect the overall product. Only compo-

nents that differ have an affect. It follows one may replace the sum of ,_ and x by their dif-

ference in (EQ 82)and retain the same value for the product.

Now X and x differ on d bits (define the number of bit differences as d). Since we are sum-

ming over all possible vectors ct with w one-bits it does not matter where in the x vectors

the differences occur therefore we may conceptually move them to the beginning of the x
vectors.
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d

I._-X[ = 11...1 00...0 (EQ83)

I1

The sum over ct can be decomposed into two parts where k bits of ct fall in the l's region

and w-k bits fall in the O's region. There are d choose k ways this can happen for the first

case and n-d choose w-k ways this can happen in the second case. The first case contrib-

utes (-1) k and the second contributes unity to the overall product. One then sees

n w

:i  oH=-,:, t -kJW' (EQ 84)

= Cw(n-d,c O.

It can be shown that

Combining these results a final expression for the inverse of the Kanverva model is ob-
tained. 7

= 2-'tw_ 0=

Ca,(n - w, w)
(inverse of Kanerva model) (EQ 86)

where

d = d,,(,_, x). (EQ 87)

The factors in this inverse expression can be given some interpreted when one considers

the inverse's behavior with the Kanerva operator along the diagonal which we know

should be equal to 1. The way the terms collapse show the interdependence of the parts of
the expression.

7. The complexity of this expression caused me to seek verification of its correctness via nonanalytic means.
I programmed the function and for small values of n (up to eight) found that indeed the product of the Kan-
enra kernel with its inverse gives the identity matrix.
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(A-IA) x,x(n,r) = ZAx, lx,(n,r)Ax, x(n,r),
X'

= Z Z A_/x'(n'r)Ax',x(n'r)'
d ffi OX'[ d.(x, x') = d

(EQ 88)

fi

Z A_,lx '(n' r)Ax',x(n' r) Z I,
d= 0 x']d.(x,x') = d

d=O

= A ,(n, r),

d=O \ /
/,

: w)
_,w._ Cp(n- w,w)

p ffiO

__ 2-n_0 n ,

=1.

To developc a sense of what the inverse looks like, plots of the activation rule and its in-

verse for n=8 axe presented below (the thin Line is the activation rule for the Kanerva mod-

el and is not in the same scale as the thicker inverse rule):
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A-I

r=-5

A-I

r=-7

Figure 8 Radial dependence of the inverse of the Kanerva model, n---8.
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For r=O the inverse is just the identity transformation and this plot is not presented. For

r=n, it was shown no inverse exists (all points in the space receive exactly the same infor-

mation and there is no way to recover the original data). The plots show the form of the

distance dependence of the inverse operator (write-rule) for r=l to r=n-1 (n--8). It can be

seen there is a general oscillatory behavior of the inverse. Some regions enfold data with a

positive sign and some regions enfold it with a negative sign.

Figure 9 depicts reading at a location (indicated by the uniformly-shaded gray disc) which

is offset from the center of a write operation. The sum over the disc of the inverse-weight-

ed data is zero.The magnitude and amplitude of the inverse rule is such that when informa-

tion is recalled from memory, using the hard thresholding nile of the Kanerva model,

competing patterns around the read point cancel exactly to leave only the data written at
the point.

The inverse of a activation nile has been obtained. The nile is quite simple and yet its in-

verse is not. The oscillatory behavior is reminiscent of the Fourier transform of a step
function which is a damped sinusoid. In the inverse case, however, the oscillations need

not decrease with increasing distance. This concludes the discussion of the Kanerva mod-
el.

Figure 9 Reading off-set from a write point.
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7.0 The Selected-Coordinate Design

Louis Iaeckel (1989) has put forth an altemative design to the Sparse Distributed Memory

of Pentti Kanerva. The design is in the same spirit as Kanerva's model, however, there are

some major differences. In the Selected-Coordinate Design (SCD) a hidden location will

be activated only if there is an exact match between the input and its ternary valued

weights. Ternary in the sense don't care values are introduced. With don't care values at-

tention to the input is restricted to a subset of selected coordinates. Each hidden location

has its own subset which are randomly chosen and have random bit values. If an input pat-

tern matches the values of the selected coordinates exactly then the hidden location is acti-

vated. For notation convenience I now treat a "bit" as an element of the set {-1,+1 } and a

don't care value as the quantity "0". The activation rule for the Jaeckel model can be spec-
ified as

Xi3C i --> 0, i -- 1, 2, ..., n,

otherwise,
(EQ 89)

for x,.Ce 1-I,0,1}".

Ifx and .¢ differ on a bit then one of them must be a don't care value (0). Notice I have ex-

tended the range of input, x, to also include the value zero. This is for symmetry and al-

lows a ready solution to the eigenvalue problem. A zero value for input can be considered

a "don't know" bit. If all input is known then a zero value will never occur. A don't know

matches any-1,0, or +1 value.

7.1 Eigenvalue problem for the Selected-Coordinate Design

The exact match criterion of the Selected-Coordinate Design allows a factoring of the acti-

vation rule into a product of indicator functions. This factoring immediately reveals the ei-

genvalue problem can be solved as a product of functions. Each function is a 3xl vector

solution of a 3x3 matrix, whose eigenvalues are readily calculated. I now go through the

steps in obtaining the eigenvectors and eigenvalues for the Selected-Coordinate Design.

Write the activation function as

Ax, x_n) = 1-[ I [XifC i >--0]. (EQ 90)

i=l

Each factor in the product expression has the same form and is the activation rule for a sin-

gle bit. This one-bit activation rule can be specified as a 3x3 matrix indicating whether ac-

tivation will occur for each of the three possible hidden states of the first bit and each of

the three possible states of the input for the first bit. Let A(1) be this 3x3 matrix then
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A(1) = I • (EQ 91)

I

That is, activation win not occur for x_/ = -1. The eigenvalue problem for A(1) is solved

by the eigenvector V with eigenvalue _.. The problem is specified as

A(1)V = gV CEQ92)

and has nontrivial solutions ordy if the determinant

!dI i-_.

0 I I

(EQ 93)

is zero. This leads to the cubic equation in _.

(t-),)3-2(I-_.) = 0, (EQ 9a)

which has the three solutions

_'a = 1 + a,/_ for a = - 1, 0, 1. CEQ 95)

For each a there is a corresponding three component eigenvector _Fa given by

FlJ1 a.f2 • (EQ 96)

These three eigenvectors can also be grouped and displayed in the symmetric 3x3 matrix

_" where

0 --.

1 -1

(EQ 97)

The full eigenvector for the Selected-Coordinate Design is now given as the product of el-

ements of W, namely
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i=l

(EQ9S)

a. ¢ {-I, 0,1 } (EQ 99)
!

where a is a "bit" string acting as a label for a specific eigenvector. There are 3n such ei-

genvectors. The eigenvalues A a for the full n-bit space are the product of the one-bit ei-
genvalues X, namely

ffI got"i=l

_Q t00)

These are further expressed as:

_ (i _ _)"i"o (I + q_)'"

_ (1_ ,/_)_ (1+ _f_)_"

The n's satisfy the equation

n = n_+n 0+n+ _Q102)

where n_, n o , and n, are the count of the number of -l's, O's, and +l's, respectively, in

the bit string a.

7.2 Inverse of the Selected-Coordinate Design

Recall the inverse of a matrix operator can be expressed as

• -h F _FTA-I " EAa a a" (EQ 103)

el

It can be seen from (EQ 100) that none of the eigenvalues for the Selected-Coordinate De-

sign are zero and so the SCD has an inverse. Since the eigenvectors and the eigenvaiues
factor for each bit it follows that the inverse also factors into a product
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AL( )= HAL( )
iffil

of one-bit inverses. This product is found to yield s

fEQ 104)

I_.l 11 -il
A-l(1) = _ . _Q 105)

1 1

The A-I(1) matrix has constant values along 45 degree diagonals. This corresponds to the

constraint that._i + x i is a constant. In fact, an element of the matrix is a function only of
the absolute value of this sum. Note it is the sum and not the difference between the com-

ponents that determines the behavior of the inverse. As such, the inverse of the Selected-

Coordinate Design can not be expressed as a function of the distance between .f and x

which depends upon their difference. This fact is not intuitively obvious since the Select-

ed-Coordinate Design's activation rule can be expressed as a function of their difference.

From the product form for the full inverse, with the insight the sum of components deter-

mines the inverse's value, it is possible to write a more explicit form for the inverse, name-

ly

= (-1)*o(l)*,(0) k' (EQ lo6)

where the k t are the count of the number of terms equal to t.

k, = _/[t=l:¢ i +xil], (EQ 107)

iffil

n = ko+kl+k 2. (EQ 10s)

Curves of constant inverse are no longer hyperspheres (cubes) as in the Kanerva model

but are curves with constant k values. If any two corresponding bits (+1) of the input and

the hidden location are the same then the store for that location is not modified (inverse is

zero) otherwise the datum is either add or subtracted from the store. This completes the

discussion of the Selected-Coordinate Design.

8. It should be noted for the simple form of the Selected-Coordinate Design it is not necessary to go through
the eigenvalue problem to obtain this inverse.

38 January 23, 1991



TotalRecallm Distrfl_iveAssoci_ve Memories

8.0 Radial activation rules

I now turn to associative memories with real-valued input and output that have activation

rules only a function of the distance between input and weights. Such systems have been

considered by Poggio (1989) under the name of (Generalized) Radial Basis Functions. In

this section I develop the inverse for such systems. The task at hand is to find a set of ei-

genfunctions and eigenvalues which satisfy radial activation rules for real-valued input.

One can go quite far in this task without specifying the exact form of the radial depen-

dence. It will be shown spherical Bessel functions play a fundamental role in the radial de-

pendence and Gegenbauer polynomials play a role in the angular dependence.

8.1 Eigenvalue problem for radial activation rules

The task is to solve the following operator problem with n-dimensional real-valued vari-

ables and an activation rule that is a function only of the distance between its arguments:

A_ = A_F, (EQ 109)

f A(n, x, fc)_P(:_)di = A(n)_F(x)
Volume

where

X, i e R n (EQ 110)

and

A(n, x, .¢) = ._llx- _II.) (EQ lid

for some scalar functionf Now (EQ 109) is the multidimensional analogue of a homoge-

neous linear integral equation of the second kind (Smithies, 1962) whose solution can be

determined from the zeros of the Fredholm determinant. Rather than follow that path here,

it is possible to decompose the operator in terms of shells and then apply Gauss's theorem

for integration over surfaces. One then obtains a differential equation that is separable in

the radial and nonradial components.

As with the Kanerva model, the radial activation rule can be decomposed into a superposi-

tion of shell operators

A(n, x, .i) = fJ[p)S(n, p, x, ./)dp (EQ 112)

0

where

S(n, p,x,._) = S(0- IIx-._ll,). (EQI13)
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The quantity 8 is the Dirac delta function (Friedman, 1956) and has the property that for

every continuous function q_,

N

rgx)c(x)_= ,t,(o). (EQ 114)

Operators S with different values of p commute and so a common set of eigenfunctions

independent of p can be found. That is,

S(n,O,x,Yc)_F(.f)d.f= _n, O)_(x) (EQ115)
Volume

with the eigenvalues of A given in terms of the eigenvalues of S by

A(n) = fX(n, p)f(p)dp. (EQ 116)
0

Note the generaJfity of this expression. Nothing has been said about the exact form off. It

need not be monotonically decreasing. It ordy need be sufficiently smooth so the integral

exists. This decoupling of the exact form of radial dependence of the activation rule from

the sheLl eigenvalue problem is very powerful for it allows the determination of the eigen-

functions for all radial activation ruies.

The task of solving the eigenvalue problem for A is now reduced to the task of solving the

eigenvalue problem for S.

8.2 Radial shell eigenvalue problem

Now, the integral over a volume of a delta function that is a function only of the radial

component becomes an integral over a surface area. Write the dummy variable of integra-
tion as

g i = X i +ru i (EQ 117)

where r is the distance between ,¢ and x and u is a unit vector pointing from x to .L Note

the differential volume element can be written as d_ - r_- t (dr) (din) where dl2 is a

differential solid angle. One finds:

f S(n,p,x,:_)'F(yc)_=J" 5(p-ilx-Xll)$(x)d/, 0_Q1tS)
Volume Volume

= f_(x+pu)p"-ld_.
£1
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The shell eigenvalue problem becomes

f_F(x+ pu)p"- Id_ = ),.(n,p)_F(x).
t'2

(EQ 119)

This integral form can be transformed into a set of differential equations for _F and _, by

first differentiating (EQ 119) by 9. In this process the derivative of _F under the integral

sign must be taken. This leads to the gradient of _F dotted with the unit surface normal u:

_(_)= " _a;_ . (EQ 120)

= u.V_F.

So

.- I p-X I] p,-t.
['_p ] = (n-l) ['_'p"- +(u-V_) (EQ 121)

Therefore, we find

_p !ea_Fda= (n-1)p-x f Wda+ f (u.V_F)da.
A Area Area

(EQ 122)

Now one may exploit Gauss's theorem (Richards, 1959) which holds for arbitrary dimen-

sional spaces so that

f (u.V'_')da= f IV2_)_. <EQ123)
Area Volume

That is, the surface integral of a vector field dotted into the normal of the differential ele-

ment of the surface is equal to the volume integral of the divergence of the vector field

over the volume enclosed by the surface. In our case the vector field is the gradient of a

scalar and so the divergence becomes the Laplacian, V 2 , of the scaler function.

" 02

j

(meLapL_cian). (EQ 124)

Now the Laplacian is taken relative to the argument of _F, namely k. This is equivalent to

the Laplacian relative to x evaluated at .t since from (EQ 117)

't'(.O = _'F(x + pu). CEQ125)
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Therefore, the Laplacian may be moved outside of the integral sign leaving a volume inte-
gral of _P as

_pAf _Fda = (n-l)p-1 f _Pda+ V 2 f W_d_.
a Area Volume

(EQ 126)

The volume integral of _P is the radial integral of the surface integral of _F. The surface

integral is by definition the eigenvalue problem and can be replaced by its right-hand side.

The radial integral I will leave in integral form for a moment:

Volume 0 t-Area -J
(EQ 127)

= f [_,(n, r) W(x)] dr,
0

The original differentiation of the area integral of tF with respect to p is equal to the de-

rivative of the right-hand side of the eigenvalue equation, so

-" (n-- 1) + _(n, r)dr V2_P(x).P
0EQ 128)

A second differentiation with respect to p removes the integral and yields the differential

equation

_p2
(EQ 129)

By dividing both sides of this equation by the product _.tF and rearranging terms we ob-

tain an equation whose left-hand side is a function only of p and whose right-hand side is

a function only of x. The equation is

(n-l) _ (_'_ I V2_FCx ) = constant. (EQ 130)

The only waythis equation can hold for all p and x is for each side to be equal to a con-

stant, say, -co z. The two differential equations, one for the eigenvalues and the other for

the eigenfunctions, become
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e_ (n- x)Z_ + +m2z = 0 (radialeigenvalues) (EQ 131)

and

V 2 _P(x) + c02_p = 0 (radial eigenfimctions). (EQ 132)

8.3 Solution of differential equations for radial activation rules

I now proceed with the process of finding the solution to the differential equations for the

eigenvalues and eigenvectors of radial activation rules.

8.3.1 Radial eigenvalues

Differential equations of the following form (Gradshteyn, 1965, EQ 8.491.6) 9

have solutions

I "-_2au, V a2 - v27u"+ + 824 0L _ _u--

au = z L..(.zl

(EQ 133)

(EQ 134)

where the Z are any of the Bessel functions of the first kind, J, second kind, N (Neumann

functions), or third kind H (Hankel's functions). When (EQ 131) is expanded we find it

corresponds to a form of (EQ I33), namely

_,,+ I-n_,+p (032+n-p2I_,) _- 0. (EQ135)

Using the appropriate associations one can then fight down the following solution for 3. as

9. There is a double misprint in one of the equations on page 971 of Gradshteyn. The correct form for equa-
tion 8A91.3.is

I -2a I l)2 _-v2y2_u =-"+--.'+ (_+_- + = O, . =%v(_?).
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_n, co, p) = (_p)"/'ZZ,, (cop).

2

fEQ 136)

The order of the Bessel function Z is rd2-1 which is integral or half integral depending

upon the dimensionality of the space. For n odd, the solutions are called spherical Bessel

functions (Sneddon, 1961, p120).

The full radial eigenvalues are then the integral over p of the shell eigenvalues weighted

by the radial activation functionf. This is expressed as

Ilg

A(n, co) = f_n, o, p)3_p)dp
0

(radial eigenvalues). (EQ 137)

An explicit form for A will depend upon the specification off.

8.3.2 Radial eigenfunctions

The differential equation for the eigenfunctions is a point-source form of the wave-diffu-

sion equation _ichards, 1959) with no time dependence. Its solution in n-dimensional ra-

dial coordinates is given in term of Hyperspherical harmonics (Avery, 1989). The first two

chapters of Avery's book are a lovely summary of the generalization of spherical harmon-

ics to n-dimensions. I follow closely his derivations here. The generalized Laplacian oper-
ator V 2 can be written in the form

n

where L 2 is the generalized angular momentum operator, defined by

fEQ t3s)

L 2 L 2_"-Z i,j (EQ 139)
i>j

and

L -x 0 x 0
i,j= i_jj- J_'Xi" (EQ140)

The eigenfunctions, It, m(_) ' of the generalized angular momentum operator L 2 satisfy

Yt, m(_) CEQ 141)L2yI, m(_) l(l+n-2)
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and axe called hyperspherical harmonics. They are a pure angular function, independent

of the hypertadius, r. They ate also orthonormal since

rt,m(_)Yr,,,,'(_)dt'l= 81,_,8,,,,,,,,.

The hyperspherical harmonics also satisfy a sum rule

C_a " U) -" KIZ:i,m(_)Yl, m(n )
rtl

where

I"(2)(2-I +l)

and ti, u ate unit vectors in the directions specified by _, ft. The C's are called Gegen-

bauer polynomials and they satisfy the same differential equation as the hyperspherical
harmonics.

We now look for a solution of (EQ 132) by the method of separation of variables where

the eigenfunction is written as a product of hypersphedcal harmonics and a radial func-

tion, R(r), to be determined. This is written as

'_'__,.(x)= R.(r)r't,re(n).

(EQ 142)

When we do this the differential equation becomes

- (Rt_(r)Yt,,.(t'l))+ to2R®(r)Yt,m(_) =

(EQ143)

Applying the operations to each function followed by division by RY yields

r [, R--.-w-(r-_ + CO2 = Yl,m(n )

0ZQ 1,_)

(EQI45)

f_Q 146)

= constant. (EQ 147)

The radial and angular dependencies have been separated. The equation must hold for all

values of the independent variables r and _ which can only be satisfied if the equation is

equal to a constant. In this case, however, we know the constant must be equal to the ei-

genvalue for the angular function Yz, ,,, which is l(l+n-2). Therefore, the differential equa-
tion for the radial dependence becomes
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 n_1,( 1R,,o_,l(r ) + __ R, ,l(r) + ca2 l(l+ n - 2) Ro_,;(r) = 0 (EQ 148)
r r 2

where the index I has been included to show R's dependence upon the angular momentum

parameter. With appropriate boundary conditions specified for R the parameter ca will also
be constrained.

The differential equation for R is remarkably similar to that for _. and yields similar Bessel

function solutions, namely

Ro,' _r) = (car) Zn-- 1+l
2

(EQ 149)

where now the order of the Bessel function is also a function of the angular momentum, 1,

and the power of the hyperradius, r, is now negative.

8.3.3 Boundary conditions

In electro-statics there usually are natural constraints on the class of functions at the

boundary of the domain under consideration. Either the electric field goes to zero on the

boundary or its derivative does. For associative memories and neural networks the issue of

boundary conditions is not usually considered. Since I do not have a good sense of what

conditions may be appropriate for associative memories I will arbitrarily consider func-

tions with Dirichlet boundary conditions and let the reader modify the solutions from here

on for his own situation if this assumption is not appropriate.

Dirichlet boundary conditions (Jackson, 1962, p15) specify the value of the function on a

closed surface. This value I take to be zero. If the input vector, x, is constrained to lie with-

in a sphere of radius a then by taking a large enough the restriction to zero values on a

does not markedly restrict the values of the function at interior points.

The condition the eigenfunction is zero on the boundary r=a places a restriction on the al-

lowable values of ca through the zeros of the Bessel function.

R_,/(a) = 0 (Dirichlet boundary condition) (EQ 150)

implies

Z n ta) = 0 (r:Q 151)- - I + l (cak"
2

where

zk, l (EQ 152)
cak, l --" a
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with zt, l a zero of the Bessel function. For each value of/(and n) there are a countably in-

finite number of zeros (k values) of Z. I now label the radial eigenfunctions with k and in-
troduce a normalization factor N. One can now write

k, l(r) = Nk, l (COt,i r) _ _ ! + i(O}k, ir) (EQ 153)

where

and

fR2,/(1.)rn- ldr = 1

0

(EQ t54)

Nk,t=CO_; I Z"2, t(co_,lr)rdr
t_o _-i+

The R functionsalsosatisfythefollowingorthogonaLitycondition

(_Q155)

a

fRk,Ar)Rk',l(r)rn- Idr = _, k'

0

since the Bessel functions satisfy 10

(EQI56)

d

fz,I +l(O_t, lr)Zn +l(COt,,lr)rdr=lV'-_21_k,k,.--1 --I
0 2 2

The eigenfunctions are now written as

(EQ 157)

I _Fk'r'''(x) = Rk'l(r)Yt'm(_)" I (EQ 158)

Using the quantized values for the frequencies the eigenvalues for the shell operator axe
expressed as

10. See Gradshteyn, p634, eq 5.54.1. for an expression for arbitrary Bcs,_l functions. 0_Q 157) holds for
Z--J, Bessel functionsof the firstkind.
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_.k,/n, P) = (%,tp)_Z,,_t(%,lp)
2

(EQ 159)

which when combined with the radial activation function yields the quamized eigenvalues

for the full problem.

Ak, l(n) : f_t,,(n, p)_p)dp
0

(discrete radial eigenvalues). _Q t6o)

The complete solutionoftheeigenvalueproblem forradialactivationruleshas been ob-

tained.Inow turntothetaskof findingthe inverseactivationruleforradialactivation

functions.
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8.4 Inverse of radial activation rules

The inverse of the radial activation rule can now be expressed in terms of the spectral rep-

resentation of the operator as previously stated in (EQ 26). Using the eigenvalues and ei-

genvectors found in the last section we see

k,i,m Ak, l
(EQ 161)

becomes

a-l(k,x) = _ [Rk'l(f)Yl'm(_)] [Rk, l(r)Yl, m(_)]*
k, I, m Ak, 1

CEQ162)

Rearranging order of summation and collecting terms which are only a function of the in-

dex m gives

:Rk, l(i')R'_'l(r)_ y*l,m(_)l.A-I(.,_, X)= k,_/_, Ak, 1 j C_m Yl, m(_)
(EQ 163)

The hyperspherical harmonics' sum rule can now be applied to yield an expression in

terms of Gegenbauer polynomials, C. The expression is

A-l(k,x) = k_iCRt, l(f)R Ll(r)_(cl(li'u) )Ak, I ,}L Ki "
CEQ 164)

The index k is applicable only to the first factor so regrouping gives

I At, t
(EQ 165)

One is now in a position to substitute the explicit Bess¢l function form for the radial de-

pendence of the eigenvectors. This yields the expression

I Zn /tot . If)Z" n + l(tot, ir)
A_1(x.x) = (?r)-(__l /_ _ _-1+a :2-I

t Ak, tfZ2n__l+l(tot, lr)rdr
0 2

(EQ 166)

One knows from symmetry the inverse, like the rule itself, must be a function only of the

distance between its arguments. This is partly revealed by the argument of the Gegenbauer

polynomial which is a function only of the inner product between the directions of :¢ and

x. An orthogonal transformation of the space (rotation) applied to both ,_ and x leaves their
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lengths (_, r)and the inner product (a, u) unchanged. The inverse is therefore invariant un-
der such a transformation.

This completes the discussion of the inverse for radial activation rides. For each explicit

form of radial dependency, fir), there will be an inverse activation rule as given by (EQ

166). Further work is necessary to investigate this expression for, Gaussian, exponential,

and spherical activation rules.
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9.0 Summary and conclusions

In previous sections were presented the derivations of the inverse activation rules for three

associative memory models. I summarize the results here.

9.1 The Kanerva model

The Sparse Distributed Memory model (Kanerva, 1988) uses a hard threshold activation

rule with binary input and binary weights. Any pattern closer than r in Hamming distance

to the weights of a hidden node will activate the node with unit activity; otherwise the

node's activity will be zero. The Sparse Distributed Memory activation rule is written

dn(x, _) < r,

otherwise.
(activation rule) fEQ 167)

The inverse activation rule is not simple.

A_)x(n, r) = 2-n Cd(n
W)W,

p=O

(inverse activation rule) (EQ 168)

with

' GCp(a, b) = k__.,o(-1) k a-k ' (EQ 169)

d = dn(_, x).

As can be seen from Figure 8 there is a general oscillatory behavior to the inverse (k bears

some resemblance to the Fourier transform of a step function). This oscillatory behavior

creates (in the multidimensional space) layers with alternating sign. The strength and sign

of a layer determines the factor a datum will be multiplied by before being added into the

memory in that region of space.

That is, about each hidden node is an "onion" with layers of alternating sign that deter-

mines how that node treats data to be written to its own local store (output weights). Un-

like the activation rule that is localized about each hidden node, the effects of the inverse

rule spread throughout the space. This is analogous to the behavior of a function and its

Fourier transform where concentration of the function in a localized region produces a

spreading in the transform space. Hence, learning with the inverse rule adjusts all of mem-

ory. Another analogy of the inverse operator can be drawn to the "Mexican hat" type of

on-cemer-off-surround neural response in the eye. Such a response can be understood as a
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general neural property necessary to form sharp boundaries in vision. It localizes effects in

a distributive system in the same way the inverse localizes memory.

9.2 The Selected-Coordinate Design

The Selected-Coordinate Design Oaeckel, 1989) is similar to the Kanerva model except

that only a subset of an input pattern is attended to by each hidden node. This is accom-

plished by including "don't care" bits with the binary values that an address (input

weights) of a hidden node can take. Such "sparse" sampling of input is also found in the

sampling of mossy fibers bygranule cells in the cerebellum (Man', 1969). Another differ-

ence is that among the "care" bits an exact match must occur for the hidden node to be ac-

tivated. The activation rule for the Selected-Coordinate Design is

Xi)C i _ O, i = 1, 2, ..., n,

otherwise,
(activationrule) (EQ 170)

x,._e {-t,o,1 }"

The exact match condition makes it easy to derive the inverse of the Selected-Coordinate

Design where it is found

A_tx = (1) k_ (0) k_(_ t) k, (inverse activation rule). (EQ 171)

The ksare the count of the number of components of Ix +.,_ which equal s. This write rule

has the property that only points, x, which are dissimilar to a hidden location, _, axe writ-

ten to ._'s store. Data will be added to the store if the number of "care" bits in x is even,

otherwisethey will be subtracted.

9.3 Radial activation rules

Radially dependent rules for function interpolation have been considered in the past and a

generalized form in the context of neural networks has been considered by Poggio 0989).
Radial activationrules can be stated as

A(x, :0 = _Ux-._ll) (activationrule) (EQ 172)

where fis an arbitraryrealvaluedfunctionof a singlevariable.Itisshown the eigenvec-

tot'sareradiallyBesselfunctions,an-guiarlyGegenbauer polynomials,and the eigenvalues

ateaconvolutionofBessclfunctionswith the radialactivationrule.The inverseactivation

rule for radial functions is
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(inverse activation rule)

where

Zk,I

a

CEQ 173)

CEQ I"/4)

Z,,__t+:zk,t)= O.
2

9.4 Conclusions

The use of iterative error correction in a_tificial neural networks and associative memories

appears to be a series expansion of some operator. When this intuition is rigorously formu-

lated for asymptotically large single-layer neural networks it is found error correction, in-

deed, is a series expansion of the inverse activation rule of the network.

Closed form expressions for the inverse show information must be spread throughout

memory in an oscillatory manner to cancel the effects of competing patterns.

The presence of an inverse also shows write-rules exist for very rapid single-step learning.

The methodology of iterative error correction does not provide an understanding of the

form of the weights resulting from its application whereas inverse activation rules speci-

fies precisely the weightings that must be applied to the data to give total recall. It is the

knowledge that such exact specifications exist which is the major result of this paper.

The existence of an inverse in the asymptotic case, causes one to seek the same type of

analysis for practical distributive memories. The lattice of input observation points in such

systems can act as a starting point of this analysis. The similarity of lattice points (as deter-

mined by the activation function between the points) forms a matrix that can be inverted

under certain circumstances. The analysis of this case and others will be the subject of fu-

ture work (Danforth, 1991).

It is expected drastic methodological changes will not be necessary to increase the quality

of recall and generalization in practical systems. It is simply a question of what changes
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should to be applied. Theoretical analysis is the guide that can show us which passage will

lead us to the appropriate changes.

In the domain of neural networks (still new and in search of solid mathematical princi-

ples), I found this research to be refreshingly concrete.
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